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Abstract— In this paper, we obtain some generating functions for the sum of two , F,(.) hypergeometric functions, for

, F,(.) hypergeometric function and for hypergeometric polynomials 3FO(.) by using series decomposition technique,
series rearrangement method. Furthermore we obtain the hypergeometric forms of sine and cosine functions.
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I.  1INTRODUCTION AND PRELIMINARIES
Throughout the present work, we use the following
standard notations: N:={1,2,3,..} ,
N, :={0,1,2,3,.. }=NuU{0} and
Z :={-1-2,-3,..}=Z,\{0} . Here, as usual, Z
denotes the set of integers, R denotes the set of real
numbers, R, , R_ denote the sets of positive and negative

real numbers respectively and C denotes the set of
complex numbers.

The Pochhammer symbol (or the shifted factorial) (1),

(A,v €C) is defined, in terms of the familiar Gamma
function, by

(), =L 1 (v=0;1eC\{0})
") |A(A+1)...(A+n-1) (v=neN;A1eC)
(11

it being understood  conventionally that (0), =1 and
assumed tacitly that the Gamma quotient exists.

The following results will be required in our present
investigations:
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The generalized hypergeometric function of one variable
with p numerator parameters and  denominator

parameters is defined by

al,az,...,a ;
Rl g 5. g7

1
q

@ )le,) e, | o

n

AR

(1.2)

Here p and q are positive integers or zero (interpreting

an empty product as 1), and we assume that the variable
Z , the numerator parameters al,az,...,a and the
P

denominator parameters ,Bl, ,Bz,..., [ take on complex
q

values, provided that ﬂj #0-1-2,....

j=1.2,...,q.
Supposing that none of the numerator parameters is zero or

a negative integer (otherwise the question of convergence
will not arise), and with the usual restriction on ﬁj, the

o Fy seriesin (1.2):
(i) convergesfor |z|<oo if p<(,

(i) convergesfor |z|<1,if p=q+1,
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(iiiy diverges forall z, z=0,if p>q+1.

Furthermore, if we set

q p
0= B =2
R

(1.3)

Itis known thatthe Fq series, with p=q+1, is
() absolutely convergentfor |z |= 1, if R(w) >0,

(1)  conditionally convergent for |z|=1, |z|#1, if
-1<R(w) <0,
(111) divergent for | z|=1, if R(w) <-1.

The idea of decomposition of a power series into its even
and odd terms [4, p.200(1)], exhibited by the elementary
identity

SW(n)= YW@+ PN +1), (L4

is at least as old as the series themselves.

Closed form of reduction formula [3, p.70 Q.N.10] for
Gauss function is given by

a a+1'
A 2'Z2|=

2a
2
———— |, (15)
2a+1 (1+\/(1—2)J

where 2a+1#0,-1,-2,-3,...; | z|<1.

Binomial theorem in terms of hypergeometric function is
given by

(1-2) =, F{“j z} _ Z(a)n% . |zKk1, aeC.
™ n=0 -

(1.6)

Double series identity [3, p.57 (7); see also 4, p.100 (3)] is
given by

n

H

iiA(k, n) = iZA(k, n—2k)

n=0k=0 n=0k=0

(.7
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where, and in what follows, [x] denotes the greatest
integer in X.

Gauss summation theorem [3, p.49 example] is given by

n —n+1
9t o 2"(b
Rl 2201 =20 4
b+= : (Zb)n
2

where b+%¢0,—1,—2,—3,... and NeN,.

sinh*(t) =7, (t+/(1+1%)) (1.9)

sin”!(it) =isinh*(t) (1.10)
sin'(it) = ién(t+\/M) (1.11)
sin(=t) =it (it++/(1-1?)) (1.12)
Xsin(t) = —ix?, (it ++/(1—t2))

(1.13)

Motivated by the work on generating functions recorded in
beautiful monographs of Erde’lyi etal. [1, Chapter 19],
McBride [2, Chapter 1] and Srivastava-Manocha [4,
Chapters 2,3], we obtain some generating relations

associated with the combination of two ,F,(.)
hypergeometric functions, one ,F,(.) hypergeometric

function and two hypergeometric polynomials 5, (.), by

the applications of some exponential functions as
generating functions. Furthermore we obtain the
hypergeometric forms of sine and cosine functions.

I1.  FIRST GENERATING RELATION

When |t|<1; a,a+%¢0,—1,—2,—3,... ; for all finite

values of X, then following generating relation holds true
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a xt
(1-1) exp[(l_t)+m+x}

1
© CZ-H"I a+—+n,; 2 n
Z (), ,F, X— + X 05+1 .F 2 X (2.1)
n=0 aizl 4 2 n +£ E 4 n!

2" 2

Proof: Consider the expression

. xt _
_— eXp{(l—t)+M} "

= (1t exg N ADHL -0}
JA-t){1+y(1-1t)}

=exp(—x)(1-t)™ exp[ﬁj

. W1 (1-1)}
Y exph(l—t)(lﬁ(l—t))}

(2.2)

=c—zxp<—x)ixrz(1—t)'[””2j

Now using hypergeometric form (1.6) of Binomial theorem, we get

—a xt _ A X o+t |
(1-1) exp{(l_t)ﬂ/(l_t)}—exp( x); . 1':0[ _2; t], It|<1

T G

- exp(—x)i{i(za; r] %}% 23)

n=0 { r=0

Now applying the series decomposition identity (1.4) in equation (2.3), we have,

— Xt
(-1 ex{(l—t)+ﬂ}

n=0

B X2r tn
- et X)Z{ro SeaT ro(“” j(2r+1>'}n'
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1
2r o F(a+n+r+§) W2 "

_ M'a+n+r) X —
= exp(— x)nZ:1 ; D) 22(1) r!+XFZ:(; F(a+|’+1) er(Sj al
2 2 2);

r

2 F(a+n+1) (a+n+1) 2
= exp(- X)Z Zr(a+n) (¢+n), X +XZ°°: 2 2T t"

| (@) (o) 2“(;) re o F(a+;) (05+1)r 22{3) | "

= exp(— X)Z (a), R, 1 '7 +x(a+zjn F, 3 7w (2.4)

2 2 2

which completes the proof of generating relation (2.1).
111. SECOND GENERATING RELATION

When |t|<1; ¢ #0,-1,—2,-3,...; for all finite values of X, then following generating relation holds true

a+n a+l+n

1-t™ exp{%—xz}:i(a)n ,F, 2 72 ,—xz E (3.2)

n=0 ff -
2

Proof: Consider the expression

. Xt =2) | _ 10 vea X°[(1-t)* -1]
(1-1t) exp[—(l_t)2 }—(1 t) exp{—(l_t)2 }

= (1-t)"* exp(x )exp{(1 t)}

r 2r

= exp(x* )Z( 1) (1—t) @+ (3.2)

Now using hypergeometric form (1.6) of Binomial theorem, we get

a-t™ exp{%} exp(x )Z( l)r 2" {Zr:ra.;t} Clt<1

"X'T(2r+a+n)t"

_ sy (K1)
= explx )ZZ rr2r+a) n

n=0r=0
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“;”)r(“f”)r(—xzw -
= ()3 (), > L

a, l+a

|
N CNC ON
a+n a+l+n
:exp(xz)i(a) Fl 2.2 Ty v (3.3)
T n2t2 a 1+a nl '
2" 2 7

which completes the proof of generating relation (3.1).

1V. THIRD GENERATING RELATIONS

Xj2n+2
s 1
N ( -n-2n-2,-n—-= ;-4 L x{1- \/(1 )}
nz(2n+2)I { _ 2 }t ‘COSh{ } 4
(XJZMI 1
=\ 2 El-n-2n-1n+> -4l 1o {1-y(1-0}
Proof: Consider the expression
N [x(\/(1t2)1>]_ { {<\/<1t2)1)(\/(1t2)+1)H
p =exp| X
t t((1-t?) +1)
:exp{—_xt }
1++/(1-t%)
- ()"
nzt;(l+\/l t2)"n! )
Now using the reduction formula (1.5) for {1+ \/l—tz}‘n in equation (4.3), we get
n+l n
BB o1 R
n: n+1l ;
(3)e
2 (—x)" & 2
nZ:: ni2" mZ::‘) (n+1),m!
n 2mtn+2m
35
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Now using the double series identity (1.7) in equation (4.4), we get

n=0m=0 m'2n (1)n—m

_i(_xjn %(_”)m(nzﬂjm(nz”jm(xgm .

n=0 n! m=0 m!

explx(w/(l t) 1)] ZZ( X)"2" (n—2m),, t"

(4.5)

Now applying the series decomposition identity (1.4) in equation (4.5), we have

[X{\/ﬁ 1}} Z( ijn ; (—2n)m(—n+;)m(—(n—l))m (—izjm o

n=0 (2”)' m=0 m!

w (_jzml n (_Zn_1)m(—n)m[—n+;j 4
+Z(; (2n+1)! mZ;, m! (_?j t (49

Since (-N+1),, #0 when m=0,1,2,3,...,n—-1; (—n+1), =0, further empty sum is treated as zero, therefore we
have

exp

4.7

= @2n+2)! = m!

[X{m 1}} tzi ijmz Z“:( 2n—2)m(—n—;)m(—n)m( ijm o
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1
(—2n—1)m(—n)m(—n+2jm[ 4jm )
- Y (4.8)

2n+2
X
x{y(1-t*) -1} zw(Zj Cn-2n-2-n-t -4 w
= F ! ! — -
ex{ t ] e 25|
2n+1
2 ]
>\ 2 —n,—2n-1, — =4
—t _ (2n+1)!3Fo! n=en= n+2. N ](t) (4.9)

Suppose X isreal, put t =iT or t* = =T ? in equation (4.9) and equating real and imaginary parts, we have

(Xj2n+2
0 1 -
{x{lw/(1+T }] Z 2 = [— n,—2n—2,—n—§ ,X_:]'](_Tz)n (4.10)

“@n+2)°°

XZ

0

! = (2n+1)!° :

.!x{l J@eT?) }] (X) F

1
!—n,—Zn—l,—n+§ ;_4](_T2)” (4.11)

Put T =i/t or T? = —t in equations (4.10) and (4.11), we get

(2n+2)1°%° X

X 2n+2
{IX{—1+\/(1 t}} i() [n,2”21”%?—24]t” (4.12)

X 2n+1
=14+ /(1-1)) ( ) —n,—2n—1,—n+l =4,
|\/_ ! { Jt } nZ;‘(Zn+1)'3F°[ 2 7} (413)

After simplification we get the generating relations (4.1) and (4.2).

V. SOME HYPERGEOMETRIC FORMS

—ix ix 1+ix —ix+1
exp[xsin(t)]=, F, 12 2 2 |4xt,F, % 2 ¢ (5.1)
2 2 !
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XX
cos(x0) =, F, % 2 sint (5.2)
2

1-x x+1
2 sint@ (5.3)

sin(x@) = xsind ,F,

Proof: Taking exponential of both sides of the equation (1.13), we get

exp[xsin™ (t)]= exp[-ix/,, (it ++/(1-t*))]= ( (1t2))iX[1+ ﬁ} (5.4)

Now using hypergeometric form (1.6) of Binomial theorem, we get

PR vy e [ 1X0 =it | | —it |
)] =H(1-t 1k, X 1
exp[xsin™ (t)] = (y(1-t%)) { ;\/(142)} N(l—tz) <

3 (0. A=ty
=0 (V1-t®)"n!

. a\nen n+ix
= (ix), (=i)"t 2.
:z( )n(n') 1Fo[ 2 ’t2] ;<1
n=0 .

n+ix

. . tn+2m
<, (ix), (i)' & g
= 5.5
nZ:; n! mzzo m! (5)
Now using double series identity (1.7) in equation (5.5), we get
n | o nom N—2M+iX
L © [2] (Ix)n—Zm(_I) (f)m
exp[xsint(t)] = t"
p[xsin ()] nZ:(;mZ:(:) (n—2m)imi
-n -n+1l,
:Z(Ix)n(_l) t 2F1 2 2 1 (5.6)
= —ix=n_ 1.
+_!
2 2
Now applying Gauss summation theorem (1.8) in equation (5.6), we obtain
n —iXx-n . . —i
e it ( 2 j .| (), (2)T( Isz)
exp[xsin(t)]= n no= . t" 5.7
plxsin™ (t)] ZO o ). ZO —— (5.7)

(1+ix), niT(

)
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Now using the series decomposition identity (1.4) in equation (5.7), we have

2n |x+2n : Aot~ IX+20+1
exp[Xsin’l(t)]_i DT 2) t2"+i n(2) r(.zz)l {20
"1 (1+1X) 5, (20)1T( |x2 —EAn n=0 (1+ix)2n+l(2n+1)!1“(_'x_2n_)
| 0,2y @AY L[ i, @), %,
=2, .i 2n )"+ i Z |2x 1 (t*)"
7| (%) @I () @+ir (%) 7| 2410, (2n+1)X ).

After simplification we get the hypergeometric form (5.1).

Replacing X by iX in equation (5.1) and equating real and
imaginary parts, we have

-X X

cos(xsin(t))=,F, % 2 42 (5.9)

X+1
2 2 (5.10)

2
1-x

. . - 2
sin(xsin~ (t)) = xt ,F, 3
2

Put sin *(t) =6 or t=sin@ in equations (5.9) and
(5.10), we get the results (5.2) and (5.3) respectively.

We conclude our present investigation, by observing that
several other generating relations and hypergeometric
forms can be obtained by using series rearrangement
technique and hypergeometric approach.
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