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Abstract— This paper refers to the study of product of Special G function and Generalized Mittag – Leffler 

function, we derive various integral transform, including Euler transform, Laplace transform, Whittaker 

transform, Hankel transform. Some results are expressed in terms of generalized Wright function. The 

transforms found here are likely to find useful in problem of Sciences, engineering and technology. 
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II. INTRODUCTION 

Throughout this paper, R and C denote the sets of real and complex numbers, respectively. Also R


= (0, ) , 

N 0 = {0 , 1, …..} and  Z


= {-1, -2, ……}. 

Definition 1.1 Special G function:  

The special  zaG ,,,  is defined by [1, 2] as 
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Definition 1.2 Generalized Mittag- Leffler Function  

 Gosta Mittag – Leffler the Swedish mathematician introduced the term Gosta Mittag – Leffler function  i.e. , 

Mittag – Leffler function is defined [3] as  
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 where is a gamma function , after this Wiman generalized the Mittag – Leffler function as        follows, 
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there are number of ways in which Mittag- Leffler function                   
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where   0,,   RC  

Definition 1.3 Product of G function and Mittag - Leffler function 
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let m = n = k then  
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  Definition 1.4 Fox – Wright Generalized Hypergeometric Function 

In 1933, E.M. Wright defined a more interesting generalized hypergeometric function of one variable [4] and 

further generalizations of the series qp F  were given by Fox [5] and Wright [6,7,8] ; 
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where the coefficients 
RAA p........,,1 and 

RBB q........,,1 such that  
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for suitably bounded values of z . qp  ,.....,,,,....,, 2121 are complex parameters.  

 The Fox - Wright function is a special case of the Fox – H function as [9] 
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Definition 1.5 The Euler Transform ([10], see also [11]) 

The Euler transform of a function f(z) is defined as 

 

                 (6) 

Definition 1.6 The Laplace Transform ( [10]) 

The Laplace transform of a function , is given by the equation 

 

     (7) 

Provided that the integral  is convergent for  and of exponential order as . 
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Also ,   

Definition 1.7 The Whittaker Transform ([9] , [12] , [13]) 

The integral formula involving the Whittaker function  is used to find the Whittaker transform is defined as  

  (8) 

Where and is the Whittaker confluent Hypergeometric function  

 (9) 

Where  is given by ([9] p.26 , eqn. 1.150) 

                                                          (10) 

Definition 1.8 The Hankel Transform [14] , also see [15]  

The Hankel transform of , denoted by  is defined as 

                                                                    (11) 

The following formula can be used to solve the integral in equation  (see [9] , p.56-57) 

                                  

II. INTEGRAL TRANSFORMS OF    zEzaG 
 ,,, , 

 

Theorem 2.1: (Euler Transform) 

Let 
Cnm ,,,,,,, 

   then Euler transform of product of  special G function and Mittag – Leffler 

function is given as       
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Proof : Let I be the left hand side of  (12)  

    nmzEzaGBI ,;, ,,,



 

 

By using  the definition of Euler transform (6) 
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By using equation (3) 
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By using definition of beta function  
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By using definition of Pochammer Symbol 
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 after using equation (4) we get the right hand side of (12). 

Corollary 1 

Use the relation between 
 
 function and Fox - H function (5), we get  
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Corollary 2 

On taking 0  , the generalized Mittag Leffler function reduces to classical Mittag leffler function. 
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Theorem 2.2: (Laplace Transform)  

      Let 
0)(,,,,,  sRandC

   then Laplace transform of product of  special  G function and 

Mittag Leffler function is given as       
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Proof : Let I be the left hand side of (13) 

    stEtaGLI ;, ,,,


 

 

then by definition of  Laplace transform (7)  
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By using equation (3) 
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after using equation (4) we get the right hand side of (13). 

Corollary 1. 

On taking 0  , the generalized Mittag -Leffler function  reduces to classical  Mittag- leffler function 
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Theorem 2.3: (Whittaker Transform)  

Let 2/1)(0)(,,,,,,   RandRC , the Whittaker transform of product of special  G 

function and  Mittag - Leffler function is given as  
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Proof : Let  I be the left hand side of (14) 
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By using equation (3)  
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dt  , we get 
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By definition of Whittaker transform (8)
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after using equation (4) we get the right hand side of (14). 

Corollary 1. 

If we are taking 0  , then it becomes 
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Theorem 2.4: (Hankel Transform)  

Let 
Cnm ,,,,,,, 

   then Hankel  transform of product of  special  G function and Mittag – Leffler 

function is given as       
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Proof : Let I be the left hand side of (15) 
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By using equation (3) 
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Using the following formula to solve the integral  

 

We have  
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after using equation (4) we get the right hand side of (15). 

III. CONCLUSION 

The novel conclusions gained in this study can be further adjusted in a variety of new and known integral 

transformations that find use in applied mathematics, bio-engineering, science, and engineering, among other 

fields. A few expansions of the primary findings are also taken into account.The current study yields several 

integral transformations that may be computed in terms of the Fox-Wright function by using the product of the 

Mittag Leffler function and the special G function. 
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